Home | Sign Up | Log In | RSSWednesday, 2019-06-19, 6:07 PM


Site menu
Section categories
Education [150]
Videos [1]
Music [0]
Chat Box
learn c language learn c language branching and loop learn c language functions learn c language Pointer Basics how web page works Oracle Solaris 10 Oracle Solaris 10 How Web Pages Work Images How Web Pages Work Adding images&gr How Web Pages Work Introduction to How to Install WAMP How to Host Your Own Website for Fr How to Install the Apache Web Serve Atomic Structure The text provides 000 tons of conversations Introduction to How Radio Works Rad often over millions of miles citizens band radio Introduction to How the Radio Spect Can information travel faster than How F-15s Work by Tom Harris Browse How F/A-18s Work by Robert Valdes B How F/A-18s Work by Robert Valdes B Flying Video Game: In the Cockpit I How F/A-22 Raptors Work by Gary Wol 10 Unidentified Sounds That Scienti 10 Things You Didn't Know About Ein Is glass really a liquid? by Laurie How Radio Works by Marshall Brain B How Radio Works by Marshall Brain B 10 Most Terrifying Vehicle Manufact How a Top Fuel Dragster Works by Ch but can Siri meet our nee How Siri Works by Bernadette Johnso How the Tesla Turbine Works by Will Lecture 1: Inflationary Cosmology: Lecture 2: Inflationary Cosmology: Lecture 4: The Kinematics of the Ho Lecture 5: Cosmological Redshift an Lecture 6: The Dynamics of Homogene Lecture 7: The Dynamics of Homogene Lecture 8: The Dynamics of Homogene Lecture 9: The Dynamics of Homogene Lecture 10: Introduction to Non-Euc IBPS Clerical Cadre Exam Pattern De Institute of Banking Personnel Sele Educational Qualifications: A Degre INTERVIEW Candidates who have been official trailer for Mission Imposs How Relativity Connects Electric an in 1738 Kinetic Theory of Gases: A Brief Re Frames of Reference and Newton’s La attempts to measure the UVa Physics 12/1/07 “Moving Clocks Run Slow” pl More Relativity: The Train and the 12/1/07 The Formula If I walk from Adding Velocities: A Walk on the Tr 3/1/2008 The Story So Far: A Brief Mass and Energy Michael Fowler Energy and Momentum in Lorentz Tran How Relativity Connects Electric an Analyzing Waves on a String Michael by f even earlier than the bra Fermat's Principle of Least Time 9/ Hamilton's Principle and Noether's meaning they have Mechanical Similarity and the Viria Hamilton's Equations 9/10/15 A Dyna A New Way to Write the Action Integ Maupertuis came up with a kind of p Maupertuis' Principle: Minimum Acti Canonical Transformations Point Tra Introduction to Liouville's Theorem Adiabatic Invariants and Action-Ang Hyperbolas Michael Fowler Prelimina Mathematics for Orbits: Ellipses Keplerian Orbits Michael Fowler Pre Newton's equations for particle mot Dynamics of Motion in a Central Pot A Vectorial Approach: Hamilton's Eq Elastic Scattering Michael Fowler B Driven Oscillator Michael Fowler (c Dynamics of a One-Dimensional Cryst I usefor the spring constant (is a a mass on a spring Motion in a Rapidly Oscillating Fie Anharmonic Oscillators Michael Fowl in which the distance betw Motion of a Rigid Body: the Inertia Moments of Inertia: Examples Michae Euler's Angles Michael Fowler Intro or more precisely one our analysis of rotational motion h Euler's Equations Michael Fowler In Motion in a Non-inertial Frame of R Ball Rolling on Tilted Turntable Mi live cricket score roll the ball ba

Total online: 1
Guests: 1
Users: 0
Home » Entries archive
« 1 2 3 4 5 ... 30 31 »

Dynamics of a One-Dimensional Crystal

Michael Fowler

The Model

Notation! In this lecture, I usefor the spring constant (is a wave number) and  for frequency ( is a root of unity).

A good classical model for a crystal is to represent the atoms by balls held in place by light springs, representing valence bonds, between nearest neighbors. The simplest such crystal that has some realistic features is a single chain of connected identical atoms. To make the math easy, we'll connect the ends of the chain to make it a circle. This is called "imposing periodic boundary conditions". It is common practice in condensed matter theory, and makes little difference to the physics for a large system.

We'll take the rest positions of the atoms to be uniformly spaced,  apart, with the first atom at  ... Read more »

Category: Education | Views: 325 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Driven Oscillator

Michael Fowler (closely following Landau para 22)

Consider a one-dimensional simple harmonic oscillator with a variable external force acting, so the equation of motion is

which would come from the Lagrangian

(Landau "derives" this as the leading order non-constant term in a time-dependent external potential.)

The general solution of the differential equation is  , where  , the solution of the homogeneous equation, and  is some particular integral of the inhomogeneous equation.

An important case is that of a periodic driving force  A trial solution  ... Read more »

Category: Education | Views: 299 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Small Oscillations

Michael Fowler

Particle in a Well

We begin with the one-dimensional case of a particle oscillating about a local minimum of the potential energy  We'll assume that near the minimum, call it , the potential is well described by the leading second-order term, , so we're taking the zero of potential at  assuming that the second derivative , and (for now) neglecting higher order terms.

To simplify the equations, we'll also move theorigin to , so

... Read more »

Category: Education | Views: 305 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Elastic Scattering

Michael Fowler

Billiard Balls

"Elastic" means no internal energy modes of the scatterer or of the scatteree are excited -- so total kinetic energy is conserved. As a simple first exercise, think of two billiard balls colliding. The best way to see it is in the center of mass frame of reference. If they're equal mass, they come in from opposite directions, scatter, then move off in opposite directions. In the early days of particle accelerators (before colliders) a beam of particles was directed at a stationary target. So, the frame in which one particle is initially at rest is called the lab frame. What happens if we shoot one billiard ball at another which is initially at rest? (We'll ignore possible internal energies, including spinning.) The answer is that they come off at right angles. This follows trivially from conservation of energy and momentum (in an obvious notation)

and Pythagoras' theorem.

Discovery of the Nucleus

The first significant use of scattering to learn about the internal structure of matter was Rutherford's use of  ... Read more »

Category: Education | Views: 328 | Added by: farrel | Date: 2017-09-01 | Comments (0)

A Vectorial Approach: Hamilton's Equation and the Runge Lenz Vector

(Mainly following Milne, Vectorial Mechanics, p 235 on.)

Laplace and Hamilton developed a rather different approach to this inverse-square orbit problem, best expressed vectorially, and made a surprising discovery: even though conservation of angular momentum and of energy were enough to determine the motion completely, for the special case of an inverse-square central force, something else was conserved. So the system has another symmetry!

Hamilton's approach (actually vectorized by Gibbs) was to apply the operator http://galileoandeinstein.physics.virginia.edu/7010/CM_15_files/image067.png ... Read more »

Category: Education | Views: 285 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Log In
Entries archive

Copyright eduCampus.tk © 2019
Powered by uCoz