Home | Sign Up | Log In | RSSWednesday, 2019-06-19, 6:04 PM


Site menu
Section categories
Education [150]
Videos [1]
Music [0]
Chat Box
learn c language learn c language branching and loop learn c language functions learn c language Pointer Basics how web page works Oracle Solaris 10 Oracle Solaris 10 How Web Pages Work Images How Web Pages Work Adding images&gr How Web Pages Work Introduction to How to Install WAMP How to Host Your Own Website for Fr How to Install the Apache Web Serve Atomic Structure The text provides 000 tons of conversations Introduction to How Radio Works Rad often over millions of miles citizens band radio Introduction to How the Radio Spect Can information travel faster than How F-15s Work by Tom Harris Browse How F/A-18s Work by Robert Valdes B How F/A-18s Work by Robert Valdes B Flying Video Game: In the Cockpit I How F/A-22 Raptors Work by Gary Wol 10 Unidentified Sounds That Scienti 10 Things You Didn't Know About Ein Is glass really a liquid? by Laurie How Radio Works by Marshall Brain B How Radio Works by Marshall Brain B 10 Most Terrifying Vehicle Manufact How a Top Fuel Dragster Works by Ch but can Siri meet our nee How Siri Works by Bernadette Johnso How the Tesla Turbine Works by Will Lecture 1: Inflationary Cosmology: Lecture 2: Inflationary Cosmology: Lecture 4: The Kinematics of the Ho Lecture 5: Cosmological Redshift an Lecture 6: The Dynamics of Homogene Lecture 7: The Dynamics of Homogene Lecture 8: The Dynamics of Homogene Lecture 9: The Dynamics of Homogene Lecture 10: Introduction to Non-Euc IBPS Clerical Cadre Exam Pattern De Institute of Banking Personnel Sele Educational Qualifications: A Degre INTERVIEW Candidates who have been official trailer for Mission Imposs How Relativity Connects Electric an in 1738 Kinetic Theory of Gases: A Brief Re Frames of Reference and Newton’s La attempts to measure the UVa Physics 12/1/07 “Moving Clocks Run Slow” pl More Relativity: The Train and the 12/1/07 The Formula If I walk from Adding Velocities: A Walk on the Tr 3/1/2008 The Story So Far: A Brief Mass and Energy Michael Fowler Energy and Momentum in Lorentz Tran How Relativity Connects Electric an Analyzing Waves on a String Michael by f even earlier than the bra Fermat's Principle of Least Time 9/ Hamilton's Principle and Noether's meaning they have Mechanical Similarity and the Viria Hamilton's Equations 9/10/15 A Dyna A New Way to Write the Action Integ Maupertuis came up with a kind of p Maupertuis' Principle: Minimum Acti Canonical Transformations Point Tra Introduction to Liouville's Theorem Adiabatic Invariants and Action-Ang Hyperbolas Michael Fowler Prelimina Mathematics for Orbits: Ellipses Keplerian Orbits Michael Fowler Pre Newton's equations for particle mot Dynamics of Motion in a Central Pot A Vectorial Approach: Hamilton's Eq Elastic Scattering Michael Fowler B Driven Oscillator Michael Fowler (c Dynamics of a One-Dimensional Cryst I usefor the spring constant (is a a mass on a spring Motion in a Rapidly Oscillating Fie Anharmonic Oscillators Michael Fowl in which the distance betw Motion of a Rigid Body: the Inertia Moments of Inertia: Examples Michae Euler's Angles Michael Fowler Intro or more precisely one our analysis of rotational motion h Euler's Equations Michael Fowler In Motion in a Non-inertial Frame of R Ball Rolling on Tilted Turntable Mi live cricket score roll the ball ba

Total online: 1
Guests: 1
Users: 0
Home » Entries archive
1 2 3 ... 30 31 »

 Ball Rolling on Tilted Turntable

Michael Fowler


We'll now consider an interesting dynamics problem not covered in most introductory texts, a rolling ball on a rotating, possibly tilted, surface. As we'll see, this tough-sounding problem is not that difficult to solve using Newtonian methods, and leads to some surprising results. For example, a ball rolling on a steadily rotating horizontal plane moves in a circle, and not a circle centered at the axis of rotation. We'll prove this -- and demonstrate it in class. Even more remarkably, if the rotating plane is tilted, the ball follows a cycloidal path, keeping at the same average height -- not rolling downhill. (This is exactly analogous to an electron in crossed electric and magnetic fields!) One reason the rolling ball problems are generally avoided is that they do not readily lend themselves to a Lagrangian analysis, but can in fact be solved quite quickly with a vectorized application of Newton's laws. The appropriate techniques are described in Milne's book Vectorial Mechanics, which we follow.

Holonomic Constraints and non-Holonomic Constraints

A spherical ball rolling on a plane without slipping is constrained in its translational and rotational motion by the requirement that the point of the sphere momentarily in contact with the plane is at rest. How do we incorporate this conditi ... Read more »

Category: Education | Views: 1133 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Motion in a Non-inertial Frame of Reference

Michael Fowler

The Lagrangian in Accelerating and Rotating Frames

This section concerns the motion of a single particle in some potential  in a non-inertial frame of reference. (We'll use rather than  for potential in this section, since we'll be using  for relative frame velocity.) The most general noninertial frame has both linear acceleration and rotation, and the angular velocity of rotation may itself be changing.

Our strategy is to begin with an inertial frame  then go to a frame  having linear acceleration relative to  then finally t ... Read more »

Category: Education | Views: 1031 | Added by: farrel | Date: 2017-09-01 | Comments (0)

 Euler's Equations

Michael Fowler


We've just seen that by specifying the rotational direction and the angular phase of a rotating body using Euler's angles, we can write the Lagrangian in terms of those angles and their derivatives, and then derive equations of motion. These can be solved to describe precession, nutation, etc.

One might hope for a more direct Newtonian approach -- we know, for example, that the steadily precessing child's top is easy to understand in terms of the gravitational torque rotating the angular momentum vector. What about applying  (the external torque on the system) more generally? It's certainly valid. The problem is that in the lab frame  meaning  and the elements of the inertia tensor relative to the lab axes are constantly changing as the body rotates. The Newtonian approach is only practicable if the connection between  can be made in the body frame defined by ... Read more »

Category: Education | Views: 1069 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Euler's Angles

Michael Fowler


So far, our analysis of rotational motion has been of essentially one dimensional, or more precisely one angular parameter, motion: rotating about an axis, rolling, precessing, etc. But this leaves out many interesting phenomena: the wobbling of a slowing down top, nutation, and so on. We need a well-defined set of parameters for the orientation of a rigid body in space to make further progress in analyzing the dynamics.

The standard set is Euler's Angles. What you actually observe as you watch a child's top beginning to wobble as it slows down is the changing direction of the axis -- this direction is given by the first two of Euler's angles: which are just the usual spherical coordinates, the angle  measured from the vertical direction and the azimuthal angle  about that vertical axis. Euler's third angle, specifies the orientation of the top about its own axis, completing the description of th ... Read more »

Category: Education | Views: 1078 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Rigid Body Moving Freely

Michael Fowler

Angular Momentum and Angular Velocity

In contrast to angular velocity, the angular momentum of a body depends on the point with respect to which it is defined. For now, we take it (following Landau, of course) as relative to the center of mass, but we denote it by  following modern usage. This "intrinsic" angular momentum is like the Earth's angular momentum from its diurnal rotation, as distinct from its orbital angular momentum in going around the Sun.

That is,

where  is the inertia tensor: this just means .

Explicitly, taking the principal axes as the  axes,

For anything with spherical inertial symmetry ... Read more »

Category: Education | Views: 1076 | Added by: farrel | Date: 2017-09-01 | Comments (0)

Log In
Entries archive

Copyright eduCampus.tk © 2019
Powered by uCoz